Белорусский государственный университет Факультет радиофизики и электроники Кафедра физической электроники *Низкотемпературное формирование слоёв силицидов платины для силовых диодов Шоттки*

Цель: исследовать процесс формирования силицидов платины при низкотемпературном отжиге. Задачи:

 исследовать особенности формирования силицидов платины в диапазоне температур от 140-500 °С при различных длительностях отжига;

- с помощью РОР определить фазовый состав и концентрационные профили полученных образцов;
- с помощью ЭД определить структурный состав формируемых структур;
- исследовать особенности электрических характеристик силицидов платины, сформированных при низких температурах.

Магистрант РФиЭ Конопляник И.В.

Руководитель: д. ф.-м. наук, профессор Комаров Ф.Ф.

Области применения силицидов.

Силовые диоды Шоттки.

Ячейка кристалла силового диода Шоттки.

MOSFETs MOSFETs с защитами IGBT 31% 6% 6% 35% 7,405 млрд. долл.

Структура мирового рынка силовых приборов (2004г.)

Значения высот барьера Шоттки для различных силицидов на кремнии n -типа

Силицид	PtSi	Pt ₂ Si	NiSi	Ni ₂ Si	VSi ₂
ф _в , эВ	0,87	0,78	0,68	0,68	$0,7{\pm}0,04$

Области применения силицидов.

Общие электрические характеристики диодов Шоттки.

	Технологический процесс				
Фирма-изготовитель	Максимально допустимое обратное напряжение, В	Максимально допустимая температура перехода, °С	Максимальная высота барьера, мВ	Максимальная плотность обратного тока, мА/мм ²	Максимальное прямое падение напряжения, мВ
International Rectifiers	20		655665	2652	290
	30	150	665675	14	320
	45		675685	10	370
	60		700710	7	450
	45		760780	2,2	440
	100	175	810830	0,95	550
	175		840880	1,5	640
ST Microelectronics	2530		680690	1835	320350
	4045	150	720740	1628	370410
	60		715720	1332	500
	45	175	785	2,76	450520
	100	175	860890	0,550,9	580610

3

Области применения силицидов.

Тепловизорные приборы.

Страна, фирма	Тип матрицы	Рабочая область спектра, мкм	Формат (число пикселей)	Размер пикселя, мкм	Рабочая температура °К	Температурная чувствительность (NETD), м°К
Германия, AEG Infrared-Module GmbH	PtSi	3 5	256x256	24x24	75	75
CIIIA, Hughes	PtSi	3 5	256x256	30x30	40	
CIIIA, Boeing Comp.	PtSi	1 5	324x240	30x30	75	60
			486x640	24x24		70
<u></u>			128x128	27x27		
"Матричные технологии"	PtSi	3 5	256x256	25x25	80	30
			512x512	14x14		

Методы формирования силицидов.

Факторы, управляющие процессом зарождения фазы силицида:

- чистота границы раздела металл-кремний;
- химическая чистота материалов плёнки и подложки;
- диффузионная способность атомов металла по отношению к кремнию или наоборот;
- температура взаимодействия.

Плёнка металла на кремнии

 $Me + Si \rightarrow Me_3Si + Si \rightarrow Me_5Si_3 + Si \rightarrow Me_2Si + Si \rightarrow MeSi + Si \rightarrow MeSi_2$

Между временем образования силицидов и температурой реакции существует экспоненциальная зависимость:

$$\frac{1}{\tau} = K e^{-\frac{Q}{RT}}$$

где τ – время образования силицида; *К* – постоянная; Q – энергия активации; *T* – температура реакции.

Важно, что состав формируемых фаз силицида во многом определяется соотношением толщин исходной плёнки металла и кремния.

•
$$d_{Me} < d_{Si}$$

Pt₂Si и PtSi; Ni₂Si, Ni₅Si₂ и Ni₃Si
• $d_{Me} > d_{Si}$
Pt₂Si и Pt₃Si; Ni₂Si, NiSi и NiSi₂

Традиционная технология получения силицидов платины

Предварительная очистка и нанесение металлической плёнки.

Проблемы:

• сильная зависимость скорости формирования от наличия плёнки оксида;

• сильная зависимость параметров силицидов от чистоты границы раздела металл – полупроводник.

2. Высокотемпературный отжиг.

Проблемы:

- нежелательные диффузионные процессы;
- механические и термические напряжения.

3. Очистка сформированных структур от непрореагировавшего металла.

Проблемы:

- химическая стойкость металлов к травителям;
- подтравливание сформированных структур.

Резерфордовское обратное рассеяние (POP/RBS).

Схема обратного рассеяния ионов в образце.

Упругое соударение иона с изолированным атомом.

Резерфордовское обратное рассеяние (POP/RBS).

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{2E \sin^2 \theta}\right)^2 \cdot \frac{\left(\cos \theta + \left[1 - (M_1 / M_2 \sin \theta)^2\right]^{1/2}\right)^2}{\left[1 - (M_1 / M_2 \sin \theta)^2\right]^{1/2}}$$

Формула Резерфорда (дифференциальное сечение)

Выход обратнорассеянных ионов:

$$Y = \sigma(\theta, E) DNt d\Omega$$

где *D* – полное число ионов, падающих на образец; *Nt* – слоевая концентрация атомов; $\sigma = \int_{\Omega} (d\sigma/d\Omega) d\Omega$.

Отжиг при 300°С 1 и 2 часа отжига.

Отжиг при 200°С 4 и 6 часов.

Согласно литературным источникам:

 $X^2 = Dt$

где X – толщина формируемого слоя, D – коэффициент диффузии, t – время отжига.

РОР анализ многокомпонентных образцов.

Концентрационные профили от Концентрационные профили от исходного образца толщиною 250Å образца с составной плёнкой (Ni, Pt, V) толщиною 250Å (Ni, Pt, V), отожжённого при 300°С (60 мин).

РОР анализ многокомпонентных образцов.

Концентрационные профили от образца с составной плёнкой толщиною 250Å (Ni, Pt, V), отожжённого при 300°С (60 мин) и при 550°С (30 мин).

Концентрационные профили от исходного образца толщиною 250Å (Ni, Pt, V)

Схематическое изображение хода дифрагированных и недифрагированных электронных лучей в объективной линзе, задней фокальной плоскости и плоскости первого изображения. 16

пэм / эд

ПЭМ-микрофотография структуры после отжига в течение 30 минут при 500°С. ПЭМ-микрофотография структуры после отжига в течение 2 часов при 300°С.

Метод Ван-дер-Пау.

Отличительной особенностью метода Ван-дер-Пау является то, что измерения можно проводить образцов любой геометрической формы.

Схема расстановки зондов.

График поправочной функции.

8

$$\rho = \frac{\pi}{\ln 2} \frac{R_1 + R_2}{2} f(R_1 / R_2)$$

При симметричном расположении зондов $R_1 = R_2 = R$, a f(R_1/R_2)=1.

$$\rho = \frac{\pi}{\ln 2} R = \frac{\pi}{\ln 2} \frac{U}{I}$$

Слоевое/удельное сопротивление образцов.

Значения слоевого сопротивления силицидов в зависимости от режимов формирования.

Тип	Отжиг	Rs,		
кремния	T, ℃	t, час	Ом/□	
р	140	4	2,09	
Р	160	4	2,11	
р	180	4	2,15	
n	200	2	2,769	
р	200	2	1,9763	
n	200	4	2,5482	
р	200	4	1,846	
n	200	6	2,3443	
р	200	6	1,897	
n	300	1	2,2849	
р	300	1	1,914	
n	300	3	2,6416	
p	300	3	1,9819	
n	300	4	2,7634	
р	300	4	2,2481	

Удельное сопротивление образцов в зависимости от времени отжига.

Слоевое/удельное сопротивление образцов.

Зависимость величины слоевого сопротивления от температуры отжига при 4 часовой длительности термообработки

Зависимости слоевого сопротивления структур от длительности термообработки: 1 – 300°C; 2 - 200°C.

Выводы.

Установлено:

• на механизм формирования силицидов платины не влияет тип проводимости кремниевой подложки;

 при температуре 300°С зарегистрировано формирование фазы Pt₂Si с дальнейшим переходом в фазу PtSi при увеличении длительности термообработки;

 фазовый состав силицида, сформированного при 200°С отжиге, ограничивается фазой Pt₂Si без дальнейшего перехода к фазе PtSi при увеличении длительности термообработки;

• процесс силицидообразования протекает по квадратичному закону;

• величины энергий активации составляют 1,25 эВ и 1,37 эВ для Pt2Si и PtSi соответственно;

• величины коэффициентов диффузии составляют 28,6 нм²/мин и 443,2 нм²/мин для Pt_2Si и PtSi соответственно;

• величина удельного сопротивления силицидов сформированных на кремнии различного типа проводимости отличается (для кремния n-типа удельное сопротивление больше).